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The Triassic Nikolai Basalt and related mafic to ultramafic intrusions are one of the world’s most 
complete and best exposed sec�ons of a large igneous province (Amphitheater Mountains, Alaska), 
and have been explored for magma�c Ni-Cu-Co-PGE mineraliza�on (Wellgreen deposit, Kluane 
Ranges, Yukon Territory, and Eureka zone, Eastern Alaska Range, Alaska). The full extent of the basalts 
and intrusions, as well as magma genera�on processes are yet to be fully established. Two hypotheses 
have been put forward to explain the geochemical varia�on in Nikolai Basalts: 1) a deep mantle plume 
(Greene et al., 2008), and 2) decompressional mel�ng of mantle beneath a back-arc/intra-arc 
spreading center (Taylor et al., 2008). To be�er understand the extent and magma�c architecture of the 
Nikolai system, inves�gate the mineral poten�al and explore the two hypotheses of basalt genera�on, 
the Alaska Division of Geological & Geophysical Surveys (DGGS) conducted mapping and geochemical 
inves�ga�ons of the province from 2013 through 2015.
We present major and trace element data from whole rocks and olivine from Triassic basalts and 
intrusive rocks collected over a 250 km along-strike transect. Chemical composi�ons of whole rock 
samples were obtained using induc�vely coupled plasma atomic emission spectroscopy and 
induc�vely coupled plasma mass spectrometry. This data is used to answer ques�ons about varia�ons 
in magma genera�on, temperature of crystalliza�on, and degree of frac�onal crystalliza�on required 
to produce the Nikolai Basalts.
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Fig. 3. Geographic distribu�on of geochemically differen�ated rocks in the map area. The geochemical classifica�on of 
mafic and ultramafic rocks is based on silica, potassium, sodium and magnesium oxide composi�on (LeBas et al., 1986; 
2000). The larger the circle, the more magnesium rich the rock. The high and very high Mg rocks tend to concentrate in 
the NE corner of the map area, and dissipate towards the SW.

Fig. 2  Rock samples classified based on �tanium and zirconium composi�on (Pearce and Cann, 1973). High 
TiO₂ volcanic rocks lie stra�graphically on top of low TiO₂ volcanicrocks, and generally have greater thickness 
(Twelker et al., 2015), however the geographic distribu�on of both is similar. 

Fig. 1.  A) Geographic distribu�on of Triassic mafic and ultramafic rocks (green dots represent data collected by Taylor 
et al. [2008], Greene et al. [2008, 2009]), the blue, pink and maroon dots represent samples collected by DGGS 
during 2013-2015 field seasons (Twelker et al., 2014; Wypych et al., 2014; Wypych et al., 2015). Pink, red and green 
shaded polygons represent Alexander, Wrangellia and Peninsular Terranes (USGS data), the orange rectangle 
outlines the area of focus of this study. The Nikolai Basalts in the region of interest erupted onto the Skolai Arc 
(Nokleberg et al., 1994).
B) Schema�c cross sec�on through Paleozoic and Triassic metavolcanic and metasedimentary rocks in the study area. 
Skolai Arc in the region is build mostly with andesi�c metavolcaniclas�c rocks with some rhyoli�c layers, and is 
capped by limestone and marble. Overlying low TiO₂ Nikolai (Late Triassic) and High TiO₂ Nikolai are largely 
metabasalts and meta-basal�c andesites. The mafic and ultramafic intrusions (low and high TiO₂) are interpreted as 
feeders to the Nikolai basalts.

B)A)

C)

D)

Fig. 4. A) Winchester and Floyd (1977) geochemical classifica�on of Nikolai volcanic rocks. Two groups (open and closed 
symbols) represent low- and high-TiO₂ composi�on of the basalts (lower and upper group). Lower group basalts tend to 
plot within the basalt to subalkaline basalt field, whereas upper group basalts plot solely in the subalkaline basalt field. 
The upper and lower groups are also dis�nguished by thair V and Zr composi�on; the upper group plot within MORB 
fields both on the Shervais (1982) diagram (fig. B), and Pearce and Cann (1973; Ti vs. Zr plot, not shown), and the lower 
group plot mostly within Island Arc Tholeiites. 
C) On Pearce`s (2008) diagram, samples from the upper group plot �ghtly within enriched MORB field, whereas the 
lower group samples sca�er mostly above the MORB array sugges�ng addi�onal processes involved in the forma�on of 
those rocks. 
D) Zr-Ti-Y diagram (Pearce and Cann, 1973) shows samples from upper group displaying within-plate classifica�on, and 
the lower group sca�er mostly towards island-arc/ocean floor fields. 

Green polygons outline upper and lower Nikolai basalts analyzed by Taylor et al. (2008) and orange polygons  outline 
data collected by Greene et al. (2005; 2008; 2009). DGGS data geerally falls within their composi�onal polygons.
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Fig. 6 Assimila�on - Frac�onal Crystalliza�on (AFC) Models (DePaolo, 1981). Since normal EMORB mel�ng and frac�onal 
crystalliza�on cannot explain the low TiO₂ Nikolai group we conducted trace-element modeling. The models presented here are the 
best fit to explain our data. Both models were run with depleted MORB (DMORB; Workman and Hart, 2005) as parental magma and 
average composi�on of Skolai Arc (red circle; Wypych et al., 2014) as assimilant, with a frac�onal crystalliza�on to assimila�on ra�o 
of 3.28 and at 1 atm pressure. In model 1 we used 20% olivine, 65% of clinopyroxene and 15% feldspar as frac�onal crystalliza�on 
material and in model 2 we crystallized 65% olivine, 20% clinopyroxene and 15% feldspar - both the composi�ons are present within 
the most mafic intrusions in the region. Other experiments (simple frac�ona�on of MORB, EMORB, DMORB, and AFC of EMORB 
and Skolai Arc) have been conducted, however none of those was able to simulate the chemical composi�on of the Nikolai groups. 
The models are plo�ed on bivariate plots ( Th vs. Y, Ce vs. Y, TiO₂ vs. Zr and Sm vs. Zr) with average low TiO₂  and high TiO₂  groups and 
cumulates. 50 to 60 % of assimila�on and frac�onal crystalliza�on of the experiment with crystalliza�on of 65% olivine, 20% of 
clinopyroxene and 15% of feldspar best explain the low TiO₂ Nikolai composi�on. The high TiO₂ Nikolai group can be explained by 
both experiments, however model 1 is a slightly be�er fit.
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Fig. 5 Preliminary major element modeling using pMELTS program (Ghiorso et al., 2005). To inves�gate the origin of the Nikolai 
magmas we undertook pMELTS modeling; here we show experiments conducted at 500 bars pressure, with star�ng  temperature 
of 1200º C and 50º C steps. Since the high TiO₂ group of Nikolai basalts and intrusions plot in the EMORB field (fig. 4 B, and C) we used 
EMORB composi�on as a star�ng point (composi�ons from Waters et al., 2010). We find that the high TiO₂ group can easily be 
explained by simple par�al mantle mel�ng followed by about 10 to 20% frac�onal crystalliza�on, however this mantle composi�on 
is not capable of producing the low TiO₂ group Nikolai Basalt. The diamonds tend to plot as more mafic than the volcanic and 
intrusive “normal groups”. They have been flagged as different because of their very high MgO content, and are interpreted by us as 
cumulates from the frac�onal crystalliza�on of the Nikolai magma. The major element frac�onal crystalliza�on pa�erns seem to 
support this interpreta�on (especially diagrams B and D). To further inves�gate the theory that the very high MgO samples are in 
fact cumulates, we performed a similar MELTS experiment using the most mafic basalt composi�on both for high TiO₂ and low TiO₂ 
group Nikolai as star�ng liquid composi�on (insert into diagram 5 B) and plo�ng olivine composi�on crystallizing from that liquid 
composi�on against olivine composi�on measured by electron microprobe with wavelength dispersive X-ray spectroscopy. Olivines 
from the cumulates always plot as more mafic than the high TiO₂ Nikolai group and fall along the sample frac�onal crystalliza�on 
trend, but cannot be explained by frac�onal crystalliza�on of the low TiO₂ group.
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Fig. 7 A) Bivariate sca�er plot showing Ce vs. Yb for upper and lower groups. Rocks of the upper magma�c suite plot 
along a posi�vely sloped trend with higher Ce:Yb ra�os, reflec�ng their characteris�c enriched REE pa�ern. The rocks 
of the lower suite generally have lower Ce:Yb ra�o, and sca�er similarly to fig.4. Olivine cumulates have low total REE 
values because REE are incompa�ble in olivine; nevertheless, many of the cumulate rocks retain the Ce:Yb ra�o of the 
high TiO₂ magma�c suite. B) The same plot showing samples with elevated values of Pt and Pd. These data indicate 
that PGE mineraliza�on occurs in cumulate rocks associated with upper Nikolai group magmas. 
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Fig. 8. Bivariate log-log sca�er plot showing Pt vs. Pd values.  
The data show two dis�nct popula�ons with differing Pt:Pd 
ra�os. High TiO₂ Nikolai extrusive and intrusive rocks have 
�ghtly clustered Pt and Pd values; however, picrites  and 
olivine cumulates have a higher Pt:Pd ra�o that is 
indis�nguishable from that of the lower group. Differing 
characteris�c Pt:Pd ra�os may reflect the condi�ons of 
mantle mel�ng or magma ascent.  

DISCUSION AND CONCLUSIONS

1)   Trace-element composi�on points toward enriched MORB as a source for high TiO₂ Nikolai group
2)   pMELTS modeling confirms the possibility of the high TiO₂ group being derived from a mantle source, however it
       cannot explain the low TiO₂ group sufficiently
3)   Trace element modeling indicates that deep mantle par�al melts mixing with Skolai Arc are required to produce the
       low TiO₂ Nikolai composi�on and can also explain the high TiO₂ Nikolai group
 4)   Elevated pla�num group elements are associated with high TiO� ultramafic, high MgO olivine cumulates of the high
       TiO₂ Nikolai group. 
5)  The Pt/Pd composi�on of  the high TiO₂ Nikolai group could suggest scavenging of the PGE from the low TiO₂
         Nikolai by the ascending high TiO₂  Nikolai melts.

Two models have been proposed to explain the two groups within the Nikolai system. Greene et al. (2008) proposed a 
deep plume as the source of the volcanic rocks whereas Taylor et al. (2008) proposed decompressional mel�ng of 
mantle due to intra- or back-arc ri�ing. Our geochemical modeling indicates the necessity of a depleted upper mantle 
component mixed with Skolai Arc to produce the low TiO₂ Nikolai member. The mixing with inherently heterogeneous 
arc could explain the sca�ered geochemical behavior of the low TiO₂ Nikolai samples. The �ghtness and homogeneity 
of the high TiO₂ Nikolai suggest that the homogeneous upper mantle was solely the source of those melts. The 
geochemical data could support both of the proposed models, however the geographic extent of the Nikolai groups 
following the arc suggests the back-arc/intra-arc spreading and decompressional mel�ng is a more plausible scenario.

Origin of the low TiO₂ and high TiO₂ Nikolai groups:
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Maier and Barnes (2004) ascribe sub-chondri�c Pt:Pd ra�os to the refractory behavior of Pt-alloys under condi�ons of 
dry mel�ng associated with tholeii�c basalts; these phases are more fusible in the more fluid-rich mel�ng regimes of 
metasoma�zed lithospheric mantle. Alterna�vely, Hughes et al. (2015) suggest that elevated (near-chondrite) Pt:Pd 
ra�os in early magmas of the North Atlan�c Igneous Province are the result of assimila�on of fusible phases in 
previously Pt-enriched subcon�nental lithospheric mantle. That the PGE-enriched rocks of the upper suite (e.g., 
picrites) have the same Pt:Pd ra�o as the early, lower magma�c suite may suggest that these later magmas assimilated 
residual PGE-bearing phases from the lower magma conduit. Early segrega�on of a sulfide melt from the low TiO₂ 
magma could also explain the lack of PGE mineraliza�on associated with this suite. The PGE endowment of the low 
TiO₂ phase may have been assimilated in the upper crust by the subsequent high TiO₂ magma. 
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